Sensitivity analysis for shape perturbation of cavity or internal crack using BIE and adjoint variable approach

نویسندگان

  • Marc Bonnet
  • T. Burczynski
  • M. Nowakowski
  • M. Bonnet
چکیده

This paper deals with the application of the adjoint variable approach to sensitivity analysis of objective functions used for defect detection from knowledge of supplementary boundary data, in connexion with the use of BIE/BEM formulations for the relevant forward problem. The main objective is to establish expressions for crack shape sensitivity, based on the adjoint variable approach, that are suitable for BEM implementation. In order to do so, it is useful to consider first the case of a cavity defect, for which such boundary-only sensitivity expressions are obtained for general initial geometry and shape perturbations. The analysis made in the cavity defect case is then seen to break down in the limiting case of a crack. However, a closer analysis reveals that sensitivity formulas suitable for BEM implementation can still be established. First, particular sensitivity formulas are obtained for special shape transformations (translation, rotation or expansion of the crack) for either twoor threedimensional geometries which, except for the case of crack expansion together with dynamical governing equations, are made only of surface integrals (three-dimensional geometries) or line integrals (two-dimensional geometries). Next, arbitrary shape transformations are accommodated by using an additive decomposition of the transformation velocity over a tubular neighbourhood of the crack front, which leads to sensitivity formulas . This leads to sensitivity formulas involving integrals on the crack, the tubular neighbourhood and its boundary. Finally, the limiting case of the latter results when the tubular neighbourhood shrinks around the crack front is shown to yield a sensitivity formula involving the stress intensity factors of both the forward and the adjoint solutions. Classical path-independent integrals are recovered as special cases. The main exposition is done in connexion with the scalar transient wave equation. The results are then extended to the linear time-domain elastodynamics framework. Linear static governing equations are contained as obvious special cases. Numerical results for crack shape sensitivity computation are presented for two-dimensional time-domain elastodynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bem- and Adjoint Variable-based Approach to Crack Shape Sensitivity Analysis

This communication addresses a computation strategy, based on the adjoint variable approach and BIE/BEM formulations of the direct problem, for evaluating crack or void shape sensitivities of objective functionals. Boundary-only expressions for such sensitivities are sought, in the context of linear elastodynamics. In the case of a void, boundary-only expressions for sensitivities of integral f...

متن کامل

BIE and material differentiation applied to the formulation of obstacle inverse problems

In this paper, we consider the problem of identifying, by means of boundary element methods and nonlinear optimization, a cavity or obstacle of unknown location and shape embedded in a linearly acoustic or elastic medium. The unknown shape is classically sought as to achieve a best fit between the measured and computed values of some physical quantity, which is here the scattered acoustic press...

متن کامل

Damage Assessment using an Inverse Fracture Mechanics approach

This paper studies the application of an inverse methodology for problem solving in fracture mechanics using the finite element analysis. The method was applied to both detection of subsurface cracks and the study of propagating cracks. The procedure for detection of subsurface cracks uses a first order optimization analysis coupled with a penalty function to solve for the unknown geometric par...

متن کامل

Dynamic response determination of viscoelastic annular plates using FSDT – perturbation approach

In this paper, the transient response of a viscoelastic annular plate which has time-dependent properties is determined mathematically under dynamic transverse load. The axisymmetric conditions are considered in the problem. The viscoelastic properties obey the standard linear solid model in shear and the bulk behavior in elastic. The equations of motion are extracted using Hamilton’s principle...

متن کامل

Domain sensitivity analysis of the acoustic far- eld pattern

We consider acoustic scattering problems described by the mixed boundary value problem for the scalar Helmholtz equation in the exterior of a 2D bounded domain or in the exterior of a crack. The boundary of the domain is assumed to have a nite set of corner points where the scattered wave may have singular behaviour. The paper is concerned with the sensitivity of the fareld pattern with respect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017